
University of York Department of Computer Science
Engineering 1

Architecture

Cohort 3 Team 5 - alltheeb5t
Aaron Heald
Alex Gu
Arun Hill

Jade Stokes
Maksim Soshchin

Meg Tierney
Will Hall



Architecture Style

The architectural style of the application follows two different styles for the game itself and
the GUI.

For implementing the GUI, the team used the Object Oriented Programming (OOP)
architecture style in order to break down the implementation of the GUI into several classes.
This decision was made in order to keep the interactions between different aspects of the
GUI both simple and controlled through information hiding and the encapsulation of data
within classes.

The team used the Entity Component System (ECS) architectural style to represent the data
and logic of the game itself. In this architecture, entity classes store information about key
concepts within the game using components (which are classes that only contain attributes).
The functionality of these entities is then implemented through system classes, which use
the components within entities to implement their behaviour.

ECS architecture was used for this system as it helped split the game’s behaviour (and the
associated data) into clear and independent sections by linking specific systems and entities.
This therefore would increase code readability and the maintainability of each aspect of the
game’s functionality.

Furthermore, due to the nature of ECS, the game’s functionality can be easily modified or
extended in response to changing requirements as each entity is made up of reusable
components. This means that entities could be modified, destroyed or created without
impacting the systems that interact with them as those interactions are based solely on
which components an entity contains. As a result of this, the implementation of the game is
much more flexible.

Design Process

The design of this system was first developed using the responsibility driven design (RDD)
process in order to create an initial model for the system which could then be mapped to
UML class diagrams and implemented after being further refined to correspond with ECS
architecture.

The team chose to follow the RDD process for creating an initial model of the system as it
isolated design from implementation, focusing on “what actions must get accomplished”, not
“How each action is accomplished” [1, p.2]. This therefore enabled objects’ responsibilities
and their interactions to be modelled in detail at a very high level, therefore maximising
abstraction and preserving flexibility as is described in [2]. The RDD process is also iterative
by design, so “offers techniques that fit with and complement agile practices” [3, p.373] and
therefore works well with the team’s chosen development methodology.

Responsibility Driven Design (RDD) process

The RDD process that was undertaken is described below. It is based on the steps
described in “A Brief Tour of RDD” by Wirfs-Brock [2].

First, the team interviewed the stakeholder as part of eliciting requirements for the system,
and then used the data collected from that interview to create a list of user, functional and
non-functional requirements.



Next, the team used these requirements, together with the extra information gained from the
stakeholder interview, to write a brief designer story. This designer story consisted of a brief,
high-level summary of the game the system implements and its functionality.

The designer story can be found on the team’s website at Designer Story:
https://alltheeb5t.github.io/

Once it had been written, the designer story was then analysed to derive a set of themes
linked to the game, from which the team could create candidate objects. Candidate objects
describe important concepts from the designer story, have unique responsibilities and can be
categorised into role stereotypes which describe their function.

In order to perform this process, the team used Candidate, Responsibilities, Collaborators
(CRC) cards to describe the purpose and list the role stereotypes of each object. These
cards were then organised into groups of related objects, which were reviewed to identify
and eliminate redundant ones. Potential relationships and interactions between different
objects were also then identified so that collaborators could be added to the cards.

The CRC cards created by the group can be found on the team’s website at CRC Cards:
https://alltheeb5t.github.io/

Finally, the process of creating and refining candidate objects was then repeated several
times, until the team was satisfied with the outcome, in order to create as streamlined and
comprehensive a model as possible that could accommodate all requirements.

Design evolution with UML class diagrams

The model created during the RDD process was then mapped to UML class diagrams to
create initial models of the relationships between different objects within the system, which
were then revised several times to further simplify.

After this, the model representing the game logic was converted into a format conforming to
the rules of the ECS architecture style. Classes were split into entities and systems, where
entities stored the information held by those classes (using new component classes to group
and represent them), and systems held the functionality of those classes.

This ECS architecture model, as well as the OOP architecture model for the UI design and
libGDX functionality, were both then revised several times over the course of the
development process due to the iterative nature of the Agile methodology used by the team.

The class diagrams for the initial model from the RDD process; the initial ECS and OOP
models; and their revisions can be found on the team’s website at Design Evolution:
https://alltheeb5t.github.io/

Diagrams and links to requirements

Languages and tools used

To create diagrammatic representations of the system’s structure and behaviour, the team
chose to use UML class and state diagrams. These were created using PlantUML, a free,
open-source tool that enables the generation of UML diagrams from textual input. The
PlantUML Gizmo Extension on Google Docs also enabled diagrams to be generated and
inserted into documents conveniently.



In the diagrams below, classes representing entities have been coloured in grey, and classes
and interfaces from the libGDX library have been coloured in blue to increase clarity.

Overall Game Class diagram

The diagram above represents the overall structure of the game, the classes and interfaces
highlighted in blue are from the libGDX library. Once the Main class has started the game,
GameScreen and GUI control the screen and respond to users’ interactions. This enables
the system to meet requirements UR_Audio, UR_Map, UR_Building, UR_Time, UR_Money,
UR_Satisfaction, NFR_Scale and NFR_Timer.

The GameScreen class stores all existing entities and uses the methods overridden from the
InputProcessor interface to detect user input and call the relevant static methods from
system classes to update the affected entities in response.

The GUI class renders the options menu on the screen, which users can interact with to
create new buildings and check the in-game time, overall satisfaction level and their current
budget.

ECS Class Diagrams



The diagrams above represent the relationships between entity and component classes
within the game. Entity classes are coloured in dark grey for clarity.

The MapStructureEntity, BuildingEntity and MapObstacleEntity classes represent university
buildings and fixed obstacles - such as rivers, roads or trees - on the map in the game.

The map itself is represented by CampusMapEntity, which tracks the space taken up by
structures on the map (by storing the BoundingBoxComponents of each existing structure on
the map), enabling the game to meet UR_Map and UR_Buildings. CampusMapEntity also
stores the individual satisfaction scores of each existing building (by keeping track of their
corresponding SatisfactionComponents), and also keeps track of the current budget as well
as the boundaries of the map.

The GameTimerEntity class tracks the current in-game time and also whether the timer has
been paused or not, helping to meet UR_Time. This class is used in tandem with AlertEntity
and EventEntity to trigger events throughout the game, enabling the system to meet
UR_Time, FR_Time and UR_Events, which are then displayed on screen by using
PopupEntity.

The diagram above shows the links between entity classes (again highlighted in grey for
clarity), and system classes, which manipulate components within the entities to implement
the game’s functionality in response to user input.

The overall map is controlled by CampusMapSystem, which deals with collision prevention
and tracks the budget. Collision prevention is managed by using the
BoundingBoxComponent of existing BuildingEntity instances when buildings are placed or
moved, helping to meet FR_Place_Building, FR_Move_Building, FR_Remove_Building and
FR_Building_Shape. This process is also aided by the MapInputSystem, which handles the
drag and drop functionality of buildings, and BuildingSystem, which ensures the images of
the buildings on the screen match the position of their BoundingBox.



In order to keep track of the user’s overall satisfaction score and determine whether they win
at the end of the game (implementing requirements UR_Satisfaction,
FR_Satisfaction_Score, FR_Building_Interaction and FR_End_Screen), SatisfactionSystem
calculates the satisfaction score of each individual building and then aggregates these
figures into a single score that is displayed on the screen.

To manage the creation of events during the game to meet requirements UR_Events,
FR_Events_Popup, FR_Positive_Events, FR_Neutral_Events and FR_Negative_Events, the
GameTimerSystem updates and tracks the GameTimerComponent within GameTimerEntity,
generating instances of AlertEntity in order to initiate events.

Once an AlertEntity instance has been initialised, it is detected by EventSystem, which
generates an EventEntity instance to represent an event and manages the enactment of its
effects on budget and satisfaction scores (using its BudgetEffectComponent and
SatisfactionEffectComponent).

The generation of an EventEntity also causes PopupSystem to generate an instance of
PopupEntity, which is then displayed on the screen in order to inform the user about the
occurrence of an event.

Behavioural diagrams

The state diagram above shows the behaviour of the game’s UI and how the user can
interact with it. This enables the game to meet requirements UR_Map, UR_Audio, UR_Map,
UR_Time, UR_Satisfaction, FR_Pause, FR_Pause_Menu, FR_Settings, FR_End_Screen,
NFR_Pause_Menu, NFR_End_Screen and NFR_Timer.

The two sequence diagrams below are examples of two important processes carried out
during the game. The first represents the process of the in-game time being monitored and
updated throughout the game (as well as the game’s behaviour when an event is triggered),
and the second shows the user creating and placing a building on the map.



The sequence diagram above demonstrates how the game meets requirements UR_Time,
FR_TIME, FR_Semesters, UR_Events, FR_Positive_Events, FR_Neutral_Events,
FR_Negative_Events and FR_Events_Popup.

The sequence diagram above shows how the game meets requirements
FR_Entertainment_Building, FR_Study_Building, FR_Catering_Building,
FR_Building_Interaction, FR_Satisfaction_Score, FR_Money_Tracker, FR_Place_Building,
NFR_Buildings and NFR_Metrics..



References

[1] R. Wirfs-Brock, “Responsibility-Driven Design.”
https://wirfs-brock.com/PDFs/Responsibility-Driven.pdf (accessed Oct. 22, 2024).

[2] Rebecca Wirfs-Brock and Alan McKean, “What is Responsibility-Driven design?,”
Wirfs-Brock Associates, Jul. 2003. Accessed: Oct. 22, 2024. [Online]. Available:
https://wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

[3] R. Wirfs-Brock and A. McKean, Object Design: Roles, Responsibilities, and
Collaborations. Addison-Wesley Professional, 2002. Accessed: Oct. 22, 2024. [Online].
Available:
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/op/9780201379433_objectdes
ign.pdf


