
University of York Department of Computer Science
Engineering 1

Continuous Integration Report

Cohort 3 Team 5 - alltheeb5t
Aaron Heald

Alex Gu
Arun Hill

Jade Stokes
Maksim Soshchin

Meg Tierney
Will Hall

The continuous integration strategy implemented for this project can be described roughly by two
primary objectives: preserving code integrity and preventing significant branch divergence.

Preserving Code Integrity
● Automated unit test runners

Triggers: Any commit to main Inputs Code (everything in core package), Unit Tests (housed in

headless package) Output: Overall result + full summary of passed / failed tests

Automated unit tests (JUnit) are only triggered for commits to the main branch since we
employed a test-driven development strategy, with other branches containing tests for
not-yet completed features.

We didn’t want the failure of these tests to provide a misleading indication that the code was
incorrect. After making changes, people would run the tests locally on their machine,
providing an initial opportunity to correct problems. The automated test runners are designed
only as a fallback, alerting people of problematic code and providing a reference machine.

● Code Reviews
Triggers: When people decide that they’ve made sufficient changes to merge
Input: Code (with new changes highlighted) Output: Comments for changes / accept PR
When people had a working implementation of a feature (even if only a subsection of a
larger feature), they were encouraged to merge this into main in order to catch integration
issues as soon as possible. Merges were performed via a pull request and, for any sizable
changes, they were reviewed by a second person. This served as a way to identify unclear
code, spot possible bugs and also to increase the development team’s BUS factor (ie. the
reviewer would gain at least a basic understanding of how the code works and be in a better
position to take over development if necessary).

● Automated Building
Triggers: Any commit to main Inputs: Entire codebase at the current moment in time
Output: A single .jar file that can be downloaded independently of the main code
This meant that it was easy for other team members to download and test the latest working
version, allowing them to provide feedback and spot newly introduced problems.

Preventing Branch Divergence
● Automatic Merge Script

Triggers: Any commit to main Inputs: Entire codebase (from main), List of branches to merge into

Output: Updated codebase on all branches / PRs created for manual review
In the lectures, we were introduced to Martin Fowler’s best practices for Continuous
integration[1], which included everyone pushing to main directly. We decided that having
separate branches and a frequent pull request schedule would be more appropriate given
the experience and timescale of our project as it allowed people to push their [not yet
working] changes to continue elsewhere and meant that any problematic merges could be
handled centrally by the most appropriate person.

We have a continuous integration workflow that, on pushes to main, would automatically
merge those changes into active development branches (or open a pull request if conflicts
occurred). This is described by Martin Fowler as Semi-Integration[1] as it ensures that any
stable changes made by other people are introduced quickly into active development
branches and reduces friction when said branch is merged into main.

Infrastructure Details
For our continuous integration, we made use of GitHub Actions because we were already using
GitHub for our code storage, it is well documented and costs nothing. Additionally, members of our
team had some prior experience with this tool. When developing the actions, we implemented
matters of best practice such as using the SHA as a version identifier on 3rd party actions and using
the permissions keyword to restrict an action’s ability to the minimum required.

Action 1: Unit testing & automated builds (unit-tests.yaml on website / Appendix. 1)
● In this action, a simple sequential architecture is used.
● The latest version of the repository is checked out and Gradle is setup (these steps were

documented in the github actions examples).
● The action then executes the tests and uses a 3rd party action by GitHub user EricoMi to

display the results in a useful summary format (see figure. 1).
● The output state (success/failure) of the ‘Publish Test Results’ job matches the result of the

testing itself. This means that a successful job can be used to indicate all tests passed.
● In case the job was successful, a build job repeats the Gradle setup steps and runs the

gradlew build command.
● The generated binary is stored within the file system of the Actions runner so in order to

access it, it must be uploaded as an artifact. This is accessible via GitHub (figure. 2)

Above: figure.2, a screenshot of the
download page for the built binary

Left: figure.1, a screenshot showing
the summary page where one test has
failed

Action 2: Automatic Merge (automatic_merge.yaml in Appendix. 1)
● There are two development branches into which new changes are merged. We were unable

to define a list of branches dynamically using a wildcard so had to hardcode names for two
branches. Use of the matrix strategy would allow additional branches to be added easily.
The following steps are performed in parallel for each of the defined branches

● An attempt is made to merge using a simple git merge command. This is designed to be
used in case of disjoint changes.

● In case there is any conflict, the merge fails. It is best to resort to manual input so as to
prevent introduction of errors. To do this, the action uses an action by GitHub user
peter-evans to create a new pull request. A review is requested from a designated team
member who can review and merge the changes ASAP.

● The content of main is placed into a temporary staging branch so that, when merged, the
content of main isn’t inadvertently affected.

Appendix 1
unit-tests.yaml

automatic_merge.yaml

References
[1] M. Fowler. (2024, Dec. 21). Continuous Integration [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html

