
 University of York Department of Computer Science
Engineering 1

Change Report

Cohort 3 Team 5 - alltheeb5t
Aaron Heald

Alex Gu
Arun Hill

Jade Stokes
Maksim Soshchin

Meg Tierney
Will Hall

Introduction

After taking over Group 2’s project, we discussed and reviewed each deliverable as a team
and decided on major changes that needed to be made to each, whether that was adding
new items to the requirements and architecture, or changing the type of team organisations
in the planning. We split into teams to handle each different deliverable who could then
properly organise the specific changes to the deliverables or code. We used Github Projects
to plan and organise priority of changes to the code, and we created a Change Log in
Google Docs to do the same with the changes to the deliverables. This log was manually
filled in by the team about the details of the change and its priority. This made it easier to
look back when writing the Change Report to see which changes were made to the old
deliverables and when.

Fig. 1 - Example Change Log entry.

To track the progress of each change, we made use of Github commits and branches, as
well as Github issues to track and communicate problems with the code whenever they were
discovered. With the deliverables, we used Google Docs edit history and version control to
see which changes were made to existing documentation and when, although we were
careful to keep an original version of the deliverables too.

When reviewing the changes made to each part of the project, we would consult the Change
Log or Github pull requests, as well as discuss with the team any changes we thought were
appropriate so that everyone was on the same page about each deliverable’s progress. This
was especially important when writing the architecture and the requirements as this was
largely happening in tandem with the development, so we made sure to make sure everyone
was informed and kept the Change Log as up to date as we could by reviewing it at the
beginning of each meeting.

Requirements

Original Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment1/pdf/Req1.pdf
New Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment2/change_report.html

Since the requirements for this project had been expanded due to the updated brief, there
were a lot of new requirements to add to the project, as well as changes that needed to be
made to the original requirements. We also decided to change the classifications of certain
requirements as we felt that they were better suited in different categories. All of these
changes have been documented in the new requirements document linked above.

Group 2 had already added in requirements for a leaderboard as their added feature in part
one of the assessment, so we ended up just changing the wording on most of their
requirements surrounding that to match the current outline in the project brief.

Minor Changes:
● We decided to reword the descriptions of some of the User Requirements as we felt

that they were too focused on the system rather than the user, for example in
UR_EXPERIENCE

● We updated the descriptions that Group 2 had already put down for the new
Leaderboard requirements (UR_LEADERBOARD, FR_LEADERBOARD,
NFR_SYSTEM_REQUIREMENTS, FR_SAVES) so that they would better fit the
current scope of the project.

● We changed the categorisation of certain requirements that seemed to fit better
elsewhere, for example NFR_SAVES was describing a save system for the scores of
each player, which was a function of the game that was able to be properly
implemented rather than an outside non-functional requirement, so it became
FR_SAVES with a similar description. The opposite was true of
FR_SYSTEM_REQUIREMENTS which was about the type of hardware the game
can run on. Therefore, we changed it to NFR_SYSTEM_REQUIREMENTS instead.

Major Changes:
● Requirements: Additional Requirements - Already Implemented Features

We added some requirements that had already been implemented by Group 2 but
weren’t listed, such as finances and satisfaction. This made it easier for our
development team to properly follow along when they were fixing any bugs to do with
these features. These new requirements include UR_SATISFACTION, FR_COUNT,
and NFR_METRICS.

● Requirements: Additional User Requirements - New Specifications
Since the project brief called for new user requirements, we added UR_EVENTS and
UR_ACHIEVEMENTS. Since they were specifically mentioned in the project brief, we
listed them as ‘shall’ requirements.

● Requirements: Additional Functional Requirements - Events
We had lots of ideas for different in-game events, and so there were a lot of specific
requirements that pertained to how these events would be executed, some of which
are shown below with the full list in the new document linked above, as well as the
general functionality of events within the game, such as how often they would
appear, how they would be displayed, the result of the event, and how players could
make choices during an event (FR_EVENT_GENERATOR, FR_EVENT_DISPLAY,
FR_EVENT_RESULT and FR_EVENT_CHOICE respectively).

● Requirements: Additional Functional Requirements - Achievements
Just like with the events, we had lots of ideas for different achievements that a player
could earn in-game that would enhance the challenge and user experience of playing
the game over to earn a higher score. Some of these are outlined in the table below.

We wanted to add a mix of achievements for different aspects of the game, such as
running out of money, keeping a steady satisfaction, or focusing on different building
types. We also added a requirement on how achievements would be displayed to the
player. We settled on having an in-game menu that players could browse through to
see the achievements they unlocked (FR_ACHIEVEMENT_MENU)

New User Requirements
UR_MENU The user shall be able to interact with several menu screens

throughout the game.
Shall

UR_EVENTS The user shall be able to experience random events in the game
that will affect their playthrough differently.

Shall

UR_SATISFACTION The user will be able to increase or decrease a metric for student
satisfaction which will influence their final score.

Shall

UR_FINANCE The user will be able to gain money as the game progresses that
will allow them to build more things on campus.

Shall

UR_ACHIEVEMENTS The user shall be able to unlock several achievements within the
game based on their actions when playing.

Shall

New Functional Requirements

FR_SATISFACTI
ON

The system shall keep track of student satisfaction as
a percentage and update based on the environment,
displaying this to the player.

UR_SATISFACTION

FR_PAUSE The system shall allow the user to pause the game
timer and view a menu of options at any point.

UR_MENU, UR_TIME

FR_TUTORIAL The system shall display a brief introduction of the
game with controls to the user upon starting a new
playthrough

UR_MENU

FR_STUDENT_FI
NANCE

At the beginning of each in-game semester the
system will give the user a lump sum of money to
spend on new buildings.

UR_TIME, UR_FINANCE

FR_BUILD_TIME The system shall take a set amount of time to ‘build’ a
new building.

UR_BUILDINGS

FR_INCOME The system shall give users a small amount of money
over time for each Eating Building built.

FR_BUILDINGS,
FR_COUNTER,
FR_FINANCE

FR_COUNT The system shall keep track of the total number of
buildings currently on the map for the user to see.

UR_BUILDINGS,
UR_COUNTER

FR_EVENT_GEN
ERATOR

The system will randomly choose an event to occur
every in-game year

UR_EVENTS

FR_EVENT_RES The system will assign a positive, negative or neutral UR_EVENTS,

ULT result after an event has occurred UR_SATISFACTION

FR_EVENT_DISP
LAY

The system will display a brief description of the event
that is currently occurring and the effect of it on
satisfaction and finances.

UR_EVENTS

FR_EVENT_CHOI
CE

For certain events the system will allow the user to
choose between two options to affect their game.

UR_EVENTS

FR_STRIKE_EVE
NT

The system shall display an event where lecturers go
on strike. Any buildings being built will pause until the
strike ends and satisfaction will decrease.

UR_EVENTS
UR_BUILDINGS
UR_SATISFACTION

FR_STRIKE_CH
OICE

The system shall give the user a choice to end the
strike early by paying the lecturers more money (and
buildings will cost more to maintain) or letting it run its
course which decreases satisfaction until it ends.

UR_EVENTS
UR_BUILDINGS
UR_FINANCE
UR_SATISFACTION

FR_ACHIVEMEN
T_MENU

The system shall have a menu that the player can
view containing all possible achievements in game.

UR_ACHIEVEMENTS

FR_BM_UNLOCK The system shall unlock the achievement “Bare
Minimum” if the user only places 1 of each building
type throughout the game.

UR_ACHIEVEMENTS,
UR_COUNT

FR_UNLUCKY_U
NLOCK

The system shall unlock the achievement “Unlucky” if
the player encounters 3 negative events in one game.

UR_ACHIEVEMENTS,
UR_EVENTS

FR_GAME_END The system shall end the game after 5 minutes. UR_TIME

FR_END_SCREE
N

The system shall display the final satisfaction score to
the player at the end of the game.

UR_SATISFACTION,
UR_MENU

FR_WIN The system shall show the player whether they have
‘won’ the game if their satisfaction is above 70% at
the end of the game.

UR_SATISFACTION

New Non-Functional Requirements

NFR_METRICS The system will update metrics
such as student satisfaction and
finances consistently.

Metrics are updated on the
screen within a second of
changing.

UR_FINANCE,
UR_SATISFACT
ION

Architecture

Original Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment1/pdf/Arch1.pdf
New Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment2/change_report.html

Due to the need to implement the full product brief for Assessment 2, the architecture
document required some major changes to reflect the new structure and functionality of the
game.

As a result of this, new sections were added to show the evolution of the system’s
architecture between Assessment 1 and 2. These sections detailed the structure of several
of the game’s main features such as achievements, in-game random events, the
leaderboard, buildings and the tracking of key game metrics (i.e. time, student satisfaction,
money).

Some minor changes were also made to the explanation of the architecture and design
process for Assessment 1 in order to maximise clarity and brevity, as well as a justification
for using the PlantUML tool to model class diagrams.

Minor Changes:

● Some minor formatting changes were made to the structure of the explanations for
each class diagram in the document in order to increase readability.

● The narratives detailing design evolution and the creation of the use-case diagram
have been rewritten to make them as clear and succinct as possible.

● A justification for the use of PlantUML to model class diagrams has been added
under ‘Class Diagrams’ on the document in order to more closely follow the brief set
out for Architecture in the assessment paper.

Major Changes:

● Throughout the entire document, many direct references to the game’s requirements
have been added in order to properly justify the features of the game’s design.

● New class diagrams (and their descriptions) have been added to the end of the
document in order to fully explain the structure and behaviour of the system now that
the product brief has been fully implemented for Assessment 2. These new sections
include:

○ The overall final structure of the game
○ How singleton classes are used to maintain and manipulate the game’s state
○ How buildings are created, managed and destroyed
○ How achievements are tracked and displayed
○ How events are triggered and their effects enacted
○ How key game metrics such as the in-game time, student satisfaction and the

player’s money are monitored and changed throughout the course of each
playthrough

○ How a leaderboard is maintained and made available for users to view

Method Selection and Planning

Original Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment1/pdf/Plan1.pdf
New Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment2/change_report.html

Since all the members of the team for this project have changed, some significant changes
had to be made to the Methods and Planning to adjust for this. However, some things in this
section did not need to be changed, as Group 2’s had the same preference that we did for
the scrum methodology, which is what they seemed to describe in the original methods and
planning document. We also decided to keep the same meeting dates that Group 2 had,
those being on a Monday and a Friday, and we also still used GitHub for version control and
the Google Suite for documentation and housing a shared drive of work.

Minor Changes:
● The document has been rewritten in places where names of team members and

deliverables need to be changed in order to keep continuity with the rest of this part
of the project.

● We decided to use a mix of IntelliJ and VSCode rather than solely VSCode for the
IDE’s in our project as our development team were specialising in different areas of
the project and we wanted everyone to just use whatever they were most
comfortable with at this point.

● We used different programs to create the assets for our project, mainly using
Microsoft Paint rather than Aseprite and Photoshop as the team were not familiar
with these programs.

● When creating diagrams for the project deliverables, the team only used PlantUML
instead of a mix of PlantUML and Goodnotes 6 as we were familiar with the former
only.

● For communication, we decided to use Discord as well as WhatsApp as we found
that sending images and having more focused conversations about certain aspects
of the project was a lot easier over Discord.

Major Changes:
● Methods & Planning: New Gantt Charts

Since there was a new timeframe for the project with many new tasks and a new
team, new Gantt Charts had to be created to organise the team’s workflow. We tried
to keep the Gantt Chart in as realistic of a timeline as we could, so that people were
not rushing to complete tasks but that everybody should have had enough to do
throughout the duration of the project. These new Gantt Charts were updated with
progress and any changes throughout the project.

● Methods & Planning: Team Organisation Method
We decided to use a different organisational method for our team when deciding how
people would be assigned parts of the project. Rather than allocating roles based on
marks, we tried to keep everyone in a role similar to the one they were in for the first
part of the project, except for the new deliverables where we simply asked members
of the team which part they’d prefer to be working on. We felt that although this didn’t
give everyone an exactly equal number of marks to work on, everyone would be
more comfortable in an area that they know most about already and can just get on
with. For example, our implementation team stayed the same as the first part of the
project.

● Methods & Planning: Role Allocation
As mentioned above, we decided to keep people in roles that they felt the most
comfortable in. We decided also to try and keep the number of team members
working on one section of the project as low as we could, so that everyone had
enough to do. Our final role allocations for this part of the project were:

● Website: Maksim
● Change Report: Meg (Requirements, Methods) & Arun (Architecture, Risk

Assessment)
● Implementation: Will, Jade, Aaron
● Testing: Alex
● User Evaluation: Maksim
● Continuous Integration: Will

Risk Assessment and Mitigation

Original Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment1/pdf/Risk1.pdf
New Document: https://alltheeb5t.github.io/assessment-
2.github.io/assessment2/change_report.html

The Risk Assessment and Mitigation report was updated in some significant ways due to the
change of team working on the project and the need to produce a different set of
deliverables for Assessment 2. As a result of this, all risk owners had to be changed to
match the new team and a new risk was added for tracking changes to the code using
continuous integration methods.

Apart from this, the structure of the risk register was modified to aid clarity and readability by
refining risk types and rating each risk using a risk matrix (1-9 scale) to more clearly signify
overall significance.

Small edits to some risks’ Impact and Mitigation sections were also made to increase the
overall readability of the risk register and the clarity of those sections.

Minor Changes:

● The description of the risk management process undertaken during the project was
edited to better explain it by adding an image of a flowchart demonstrating each step
of the process.

● The phrasing of the Impact sections of R1, 2, 5, 6 and 8, as well as the Mitigation
sections of R2, 4, 6 and 7 were modified to increase the clarity and brevity of those
risks’ descriptions.

● The formatting of the risk register table has been modified slightly to make it easier to
read and assess the risks listed.

● References one and three have been added to the report to properly cite the new
changes made.

Major Changes:
● The risk types were changed to include Schedule, Team, Requirements, Code and

Tools instead of Human and Product in order to help refine the classification of each
risk and therefore better describe them.

● The Risk Matrix metric was added to the risk register in order to help readers quickly
assess the overall significance of a risk. This change was implemented by rating
each risk on a scale of 1-9 using the risk matrix (shown in the new risk report) to
represent each risk’s likelihood and potential impact in a single value. These values
were then added to the register table in a new column, ‘Risk Matrix’, that was colour-
coded (red, amber and green) to clearly demonstrate the risk’s importance.

● Each risk’s owners were updated to correspond with our team members as opposed
to those of the previous team. This therefore ensured that, for every risk, one or more
team members were assigned to handle its migitation.

● The risk R9 was added in order to highlight the potential issue of tracking and
merging conflicting code versions, which could become a problem while the
implementation team refactored, debugged and extended the previous team’s code.
The mitigation strategy for this was to keep commits small and regular and to use
continuous integration methods to preserve code integrity and prevent branch
divergence while team members worked on implementing or testing different aspects
of the product brief simultaneously.

