
 University of York Department of Computer Science 
Engineering 1 

 

Software Testing Report 
 

Cohort 3 Team 5 - alltheeb5t 
Aaron Heald 

Alex Gu 
Arun Hill 

Jade Stokes 
Maksim Soshchin 

Meg Tierney 
Will Hall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



This report outlines the testing methods and results for the game developed by our group. 
We aimed to test all system requirements, using 70 automated tests with JUnit wherever 
possible. Some features, such as those requiring user interaction or visual feedback, could 
not be tested automatically, so we conducted 18 manual in-person tests, detailed in a 
separate document titled Manual In-Person Testing. Each test is linked to a specific 
requirement. This ensures comprehensive coverage and clear traceability for all 
requirements. 

 

Testing Methods and Approaches 
Code Refactoring for Testability - 
To facilitate thorough testing, we reorganized the code by increasing modularisation and 
moving key components into the GameGlobals file, enabling easier access and manipulation 
within unit tests. This restructuring improved test coverage and maintainability since we 
reduced dependencies on UI-related components. By utilizing GameGlobals, key variables 
are stored independently of UI-related instances, simplifying testing and ensuring the 
separation of concerns. 

 
Automated Testing with JUnit - 
We used JUnit to create automated tests, allowing us to quickly verify the game logic against 
functional requirements. With their quick run time, automated tests enabled rapid debugging 
and supported test-driven development. To assess coverage, we used JaCoCo to analyze 
which parts of the code were tested. JaCoCo generated detailed reports showing which lines 
and if-statements were executed during tests, helping us identify areas of the game that 
were entirely untested. This ensured thorough testing of the game’s logic, decision-making 
processes, and edge cases, making the development process more robust and reliable. 

Manual In-Person Testing - 
In addition to automated testing, we conducted manual testing by actively playing the game. 
This approach was essential for evaluating aspects that are challenging to automate, such 
as usability, user experience, and ensuring the accuracy and appearance of UI elements. 
The coverage report reflects poor automated test coverage on files containing LibGDX 
UI-related code due to these manual testing requirements. Additionally, the game 
incorporates randomness, which we excluded from automated tests to maintain repeatability. 
Manual in-person testing ensured comprehensive coverage of all system requirements. 
 
Functional Requirements-Based Testing- 
All tests were designed to validate compliance with functional requirements, which were 
themselves derived from user requirements. This ensured that the game met its intended 
purpose from the perspective of end users. 

 



 

Automated Test Result Table 

Test Name No. of Tests Pass / Fail Purpose 

Achievements
Test.java 

20 Pass Ensured achievements triggered correctly under 
gameplay conditions, handled edge cases robustly,and 
displayed accurate notifications for unlocked 
achievements. 

Building Test. 
java 
 
 

7 Pass Verified that buildings could be placed correctly, 
collisions were handled properly, deleted spaces could 
be reused, and buildings stayed within the map. 

CounterTest.ja
va 
 

1 Pass Ensure that building counters are appropriately 
incremented when a new building is placed and 
decremented when a building is deleted 

EventsTest.jav
a 

18 Pass Checked that events were scheduled and triggered 
correctly, updated game parameters like balance and 
satisfaction, handled positive and negative events 
properly, and worked in edge cases like no buildings 
being present. 

FileHandlerTe
st.java 
 
 

2 Pass Checked that building data files loaded correctly with 
all details and textures, and that map files loaded 
properly for valid filenames while handling invalid 
filenames safely. 

GameConfig 
Test.java 
 
 

2 Pass Make sure that game settings are saved and loaded 
properly, so changes are kept, and old values are 
replaced with the correct ones when loaded. 

GameTimeTes
t.java 
 

2 Pass Checked that the game timer counts down correctly to 
zero and never goes below zero, even if decremented 
too much. 

LeaderboardT
est.java 
 
 

5 Pass Checked that leaderboards load correctly, new scores 
are ranked properly with a limit on entries, 
leaderboards save and reload accurately, and edge 
cases like empty or full leaderboards are handled well. 

MoneyTest.jav
a 
 

5 Pass Checked that placing buildings deducts the right cost, 
deposits and withdrawals work correctly, buildings earn 
money as expected, multipliers affect earnings 
properly, and earnings adjust when the player is in 
debt. 

SatisfactionTe
st.java 

6 Pass Checked that satisfaction starts at the right value, 
stays between 0 and 100, adjusts correctly with 



 
 

bonuses and penalties, recalculates properly based on 
building placement, and handles duplicate buildings 
appropriately. 

TestSuper.java 
 
 

0 N/A Ensures a consistent test setup, reusable methods for 
tasks like adding buildings, and predefined coordinates 
to simplify and streamline testing. 

TimerTest.java 2 Pass Checked that seconds convert correctly to 
“minutes:seconds” and that in-game time progression 
(semesters and summers) follows the right order. 

 

Manual In-Person Test Report 
Please see Manual In-Person Testing document for the report on the website. 

Total test pass/fail pie chart & Bar chart of different method of testing: 

 

[1] 

Failed Test 

Only Test 16 in Manual In-Person Test has failed. 

Description - The system shall use a colour scheme that wouldn’t be confusing to colour 
blind people. 

Result: The use of blue and green in the colour scheme might be problematic for some 
colour-blind users, potentially leading to confusion. 

This test failed because the current colour scheme doesn’t work well for colour-blind users. 
While usability was tested manually, the colours need to be improved to be more accessible. 

To fix this, we suggest adding a “colour-blind mode” with better colour options. This can be 
done by: 

● Changing the colours to be high-contrast and easier to see. 
● Adding a setting so players can turn on a colour-blind-friendly mode. 



These changes would make the game more accessible and help pass the test. 

 

Completeness and Correctness of Tests 
Our testing approach focused on ensuring both completeness and correctness. We explicitly 
marked tests with their associated requirements to improve traceability and grouped them 
based on the part of the code they related to. For example, handlers, which manage most of 
the game’s processing, were matched with a set of unit tests that explicitly validated each of 
that handler’s functions. We considered a wide range of scenarios, including non-standard 
ones, such as events running without any buildings placed. This helped us verify the game’s 
behavior across different and less typical situations. 

When we encountered problems during playthroughs that weren’t covered by existing tests, 
we created new ones to address them. Although automated test coverage for the UI was 
limited, extensive playthroughs provided confidence in those areas. Especially true as high 
code reuse also meant that errors in shared components would impact multiple areas, 
increasing the potential for error detection and increasing overall system confidence. 

To ensure correctness, our tests were developed based on the system’s requirements and 
intended behavior rather than its implementation. Having different people write the tests and 
implementation emphasized this distinction. Reusable methods were created for common 
actions within tests, reducing the risk of errors on each re-implementation. Complex tests 
often relied on simpler methods that had already been verified and used, ensuring a strong 
foundation for more complicated tests. 

We used direct module instantiation wherever possible to limit the scope of tests and avoid 
external dependencies. However, in some cases, components relied on GameGlobals, 
which required a broader scope. Manual testing was often conducted in a group setting, 
providing opportunities for second opinions. Occasionally, tests did prove to be incorrect, 
which mandated a deeper analysis of both the tests and the code. Often this revealed issues 
in the code itself too, leading to a better understanding of the system’s behavior and 
improving both the tests and application. 

 

Link to Website Testing Material 
https://alltheeb5t.github.io/assessment-2.github.io/assessment2/testing.html 

References 
Meta-Chart. “Pie Chart/Bar Chart.” Accessed [date]. https://www.meta-chart.com/.[1] 


