Github Actions Code

Action 1: Unit testing & automated builds (unit-tests.yaml)

name: Run Unit Tests
description: For any pushes to the main branch, run all unit tests and then, if testing is sucessful, build a .jar file

on:
push:
branches: ["main"]

jobs:
test:
runs-on: ubuntu-latest
permissions:
contents: read
checks: write $# Needs to write extended output of tests

- name: Checkout latest commit
: actions/checkout@v4

- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin’

- name: Make gradlew executable
run: chmod +x ./gradlew

-

Configure Gradle for optimal use in GitHub Actions, including caching of downloaded dependencies.
See: https://github.com/gradle/actions/blob/main/setup-gradle/README .md
- name: Setup Gradle

uses: gradle/actions/setup-gradle@afldaé7850ed9adceddS7bfd976089dd991e2582 # v4.0.0

"

- name: Run all unit tests
ran: ./gradlew test

- name: Publish Test Results
uses: EnricoMi/publish-unit-test-result-action@l70b£24d20d201b842d7a52403b73ed297e6645b
if: always() # Want to run this step even if the testing step itself fails
with:
comment_mode: off # Don't want to leave a comment on related PRs
files: |
headless/build/test-results/** /% xml

$# If tests pass, make a .jar file available to download
build:

runs-on: ubuntu-latest

needs: test # Will be skipped if tests fail

permissions:
contents: read

steps:
- name: Checkout latest commit
uses: actions/checkout@v4

- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin'

- name: Make gradlew executable
run: chmod +x ./gradlew

"

Configure Gradle for optimal use in GitHub Actions, including caching of downloaded dependencies.
See: https://github.com/gradle/actions/blob/main/setup-gradle/README .md

- name: Setup Gradle

uses: gradle/actions/setup-gradle@afldaé7850ed9a4ceddS7b£d976089dd991e2582 # v4.0.0

">

- name: Build with Gradle Wrapper
run: ./gradlew build

- name: Upload build artifacts
uses: actions/upload-artifact@v4
with:
name: UniSim Java Package
path: lwjgl3/build/libs/* # Upload generated Java file ('*' used in case output file name changes)

Action 2: Automatic Merge (automatic_merge.yaml)

name: 'Automatic Merge'
description: Automatically merge changes from main into active development branches

on:

push:
branches: ["main"]

jobs:

merge-branches:
name: Merge main into develop
runs-on: ubuntu-latest

strategy:
matrix: # Use matrix to merge into any number of active development branches
branch: ["devl", "dev2"]

permissions:
contents: write
pull-requests: write

steps:
- name: Checkout latest code version
uses: actions/checkout@v4

Attempt to automatically merge latest changes
- name: Merge main -> develop
id: execute_merge
uses: devmasx/merge-branch@éec8363d74aad4f1615d1234ae1908b4185¢c4313
with:
type: now
from branch: main
target_branch: ${{matrix.branch}}
message: 'CI: Merge latest changes from main'
github tcken: $£{{ sscrecs GITHUE TOXEN !}
continue-on-error: true -
If unable to merge automatically, create a pull request to attract manual attention
- uses: actions/checkout@v4
if: always() && Steps.execute_merge.outcome == *failure' # Outcome property provides the real result
with:

ref: ${{matrix.branch}}

- name: Reset staging branch

if: always() && steps.execute_merge.outcome == 'failure' # Have to include the always() property otherwise GitHub will assume success() &&

run: |
git fetch origin main:main
git reset --hard main

- name: Create Pull Request

if: always() && steps.execute_merge.outcome == 'failure'
uses: peter-evans/create-pull-request@5e914681df9dc83aaded905692cas88beb2f9e9lf
with:

title: 'CI: Merge latest changes from main'
reviewers: Lime-Parallelogram

branch: stageing

labels: 'ci-automated'

(before continue-on-error)

