
University of York Department of Computer Science
Engineering 1

Requirements

Cohort 3 Team 5 - alltheeb5t
Aaron Heald

Alex Gu
Arun Hill

Jade Stokes
Maksim Soshchin

Meg Tierney
Will Hall



Our team began the requirement section of this project by organising, preparing for, and
completing a stakeholder meeting. We prepared a list of questions we had about the system
based on the product brief and our research into suitable applications which we could use
during the planning and implementation of the product. After the interview, we used the
information gathered to create structured tables of requirements to better prepare and
ensure smooth running for the design, creation and testing elements of the project.

The interview planning began by reading through the product brief and outlined what we
believed to be the most important features for the product. We followed the idea of an
open-interview described in Sommerville’s Software Engineering [1] by asking probing
questions and discussing a wide range of topics during the given time. It was also decided
that we would have our whole team in the meeting so that members from all aspects of the
project would hear directly from our stakeholder, as is suggested by Radigan [2] to prevent
any confusion in the exchanging of information.

Following the interview, we decided it was important to follow Natani [3] and to lay out our
requirements in user, functional and nonfunctional sections, so as to make them clearer to
read through and communicate with others. We displayed them in tables with given priorities
(low/medium/high) as explained by Bartlett which “helps your team with clarity and direction”
[4]. This allowed us to focus on the most important aspects throughout design and
implementation and allowed us to note what was currently out of scope for the project.

When writing the requirements we tried to follow the rules laid out by Incose [5] to keep our
requirements accurate and unambiguous. We also used natural language throughout so that
our stakeholder would be able to completely understand the document without any technical
experience. Himes also mentioned the need for all requirements to be verifiable in order to
“demonstrate that it fulfils the requirement” [6]. For this reason we decided to link all our
functional requirements to user requirements to clearly show where each user requirement
has been completed, and add ID tags to each requirement to link them to tests that we run.

It was important to our team that our stakeholder would be able to easily understand our
requirements and that we completely met their needs during this project. For that reason we
decided to make most of our layout decisions based on how easily someone external to our
team would be able to read the document, for example setting each set of requirements out
in a table and avoiding the use of technical jargon. We also ensured to ask during our
interview, both if there was anything our client wanted to add that hadn’t already been
mentioned, and what the best methods of contact were for them.

For the purpose of the simplicity of our requirements tables and other documentation linking
to them we have used abbreviations in tags:

- UR is User Requirement
- FR is Functional Requirement
- NFR is Nonfunctional Requirement



User Requirements:

Requirement Priority Description

UR_Family_Fri
endly

High The user must not experience any violence or inappropriate content
in the game as it may be demonstrated to all audiences including
children.

UR_Audio Medium Users should have the option to enable or disable audio to improve
their game experience.

UR_No_Prepar
ation

High The user must be able to play the game with no other information
than what is given within the game itself (e.g. no outside tutorial from
developers, documentation, etc.)

UR_Map Medium The user should be able to recognise and navigate around a 2D Pixel
Art map of a university campus.

UR_Buildings High Users must be able to place different building types around the
campus.

UR_Time High The user must have the ability to pause gameplay for an unspecified
time. The duration of the game must be 5 real life minutes and 3 in
game years.

UR_Events High The user must be able to interact with at least three positive, neutral
or negative events throughout the game

UR_Money Medium The user should deal with financial constraints restricting the user’s
ability to build new buildings.

UR_Satisfactio
n

High The user must be able to view a performance metric called Student
Satisfaction throughout the game to gauge their progress.

Functional Requirements:

Requirement Priority Description User
Requirement

FR_Map_Display High The system must display a map which users
can move over.

UR_Map

FR_Map_Feature
s

High The system must contain some pre-set
features on the map.

UR_Map

FR_Time High The system must track the minutes which the
game has been running.

UR_Time

FR_Semesters Medium The system should track and display the
week and semester the player is currently in
(2 per year + summer).

UR_Time

FR_Pause High The system should allow the user to pause
the timer for the game by pressing a pause
menu.

UR_Time

FR_Pause_Menu High The system must start on the pause menu
and must have the option to start play.

UR_Time

FR_Settings Low The system may have a settings menu within UR_Time



the pause menu.

FR_Mute_Buttons Low The system may have a button to mute the
music and sound effects.

UR_Audio

FR_Audio_Sliders Low The system may have a slider to adjust how
loud the audio is.

UR_Audio

FR_Tutorial High The system must display a brief explanation
of the game before the game starts.

UR_No_Prepara
tion

FR_Place_Buildin
g

High The system must allow a user to place
buildings around the campus.

UR_Buildings

FR_Budget High The system must not allow the user to place a
building if they do not meet the required
budget.

UR_Buildings

FR_Move_Buildin
g

Medium The system should allow the user to move
previously placed buildings.

UR_Buildings

FR_Building_Tim
er

Medium The system should take a set time to build
each building once it has been ‘placed’.

UR_Buildings

FR_Building_Cou
nter

High The system must have a counter which tracks
and displays the number of placed buildings
for each type of building.

UR_Buildings

FR_Building_Typ
e

High Each building must have a certain type that
describes what function it has (eg.
accommodation, recreational, etc.)

UR_Buildings

FR_Accommodati
on_Building

High The system must allow the user to place an
accommodation building.

UR_Buildings

FR_Entertainmen
t_Building

High The system must allow the user to place
entertainment buildings.

UR_Buildings

FR_Study_Buildin
g

High The system must allow the user to place
study buildings.

UR_Buildings

FR_Catering_Buil
ding

High The system should allow the user to place
catering buildings.

UR_Buildings

FR_Remove_Buil
ding

Medium The system should allow the user to remove
the buildings if they can meet the required
budget.

UR_Buildings

FR_Building_Sha
pe

Medium Different building types should have different
shapes so they are differentiable by shape
not colour.

UR_Buildings

FR_Building_Inter
action

Medium The system should increase the satisfaction
score if appropriate buildings are placed close
together.

UR_Buildings,
UR_Satisfaction

FR_Satisfaction_
Score

High The system must keep track of and display
the satisfaction score. It should be highlighted
red if it is below the threshold.

UR_Satisfaction



FR_End_Screen Medium The system should display a screen showing
the user’s final score and an option to play
again after 5 minutes.

UR_Satisfaction

FR_Money_Track
er

High The system must track the amount of money
the user has and display it on screen.

UR_Money

FR_Income_Expe
nses

Medium The system should have multiple ways to
increase and decrease the budget.

UR_Money

FR_Events_Popu
p

High The system must create a pop up informing
the player of an ongoing event.

UR_Events

FR_Positive_Eve
nts

High The system must create a positive event that
increases satisfaction and/or budget

UR_Events

FR_Neutral_Even
ts

High The system must create a neutral event that
doesn’t affect satisfaction or budget

UR_Events

FR_Negative_Ev
ents

High The system must create a negative event that
decreases satisfaction and/or budget

UR_Events

Non_Functional Requirements:

Requirement Priority Description

NFR_OS High The game must run smoothly on Windows, Linux and Mac
OS.

NFR_Scale High The system must scale to different window sizes and still
correctly display the game.

NFR_Licencing High The system must not violate the licensing requirements of
any of the 3rd party libraries, tools and assets used.

NFR_Target_Audi
ence

Medium The system should be easy for users of all ages to use,
understand and interact with.

NFR_New_Users High The game must be easy for users with no prior experience to
use, understand and interact with.

NFR_Access Medium The system should be operable by users who are colour
blind or have impaired vision.

NFR_Metrics High Tracked metrics such as satisfaction and money must be
updated within 1 second of action by user/event.

NFR_Pause_Men
u

High The game’s pause menu must appear within 1 second of the
pause button being pressed.

NFR_End_Screen High The system’s end screen must be displayed within 2
seconds of the 5 minute timer ending.

NFR_Buildings High Buildings must start to be placed, destroyed or moved within
1 second of the user’s interactions with the game.

NFR_Timer High The system should ensure that the game lasts five minutes.



Requirements References

[1] I. Sommerville, Software Engineering, 10th ed. Harlow(England): Pearson Education
Limited, 2015, pp. 115, 116. Accessed: Oct. 30, 2024.​[Online]. Available:
https://ebookcentral.proquest.com/lib/york-ebooks/reader.action?docID=5185655&ppg=9

[2] D. Radigan, “Agile Requirement Documents: Your Product Blueprint,” Atlassian.
https://www.atlassian.com/agile/product-management/requirements (accessed Oct. 30,
2024).

[3] D. Natani, “The Art of Writing Good Requirements,” Atlassian Community, Sep. 15,
2020.
https://community.atlassian.com/t5/Jira-articles/The-art-of-writing-good-requirements/ba-p/14
82103 (accessed Oct. 30, 2024).

[4] J. Bartlett, “How to Write Good Requirements (With Example),” TestLodge Blog, Aug.
28, 2023. https://blog.testlodge.com/writing-good-requirements/ (accessed Oct. 30, 2024).

[5] INCOSE, M. Ryan, and L. S. Wheatcraft, “INCOSE Guide to Writing Requirements
v3.1 – Summary Sheet,” INCOSE-TP-2010-006-03.1, Apr. 2022, pp. 3. Accessed: Oct. 30,
2024. [Online]. Available:
https://www.incose.org/docs/default-source/working-groups/requirements-wg/rwg_products/i
ncose_rwg_gtwr_summary_sheet_2022.pdf?sfvrsn=a95a6fc7_2

[6] E. Himes, “8 Tips for Writing Better Requirements,” PTC, Sep. 25, 2024.
https://www.ptc.com/en/blogs/alm/8-tips-for-writing-requirements (accessed Oct. 30, 2024).


